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Abstract

As part of our effort to increase survival of drug
candidates and tomove ourmedicinal chemistry design
to higher probability space for success in the Neuro-
science therapeutic area, we embarked on a detailed
study of the property space for a collection of central
nervous system (CNS) molecules. We carried out a
thorough analysis of properties for 119 marketed CNS
drugs and a set of 108 Pfizer CNS candidates. In
particular, we focused on understanding the relation-
ships between physicochemical properties, in vitro
ADME (absorption, distribution, metabolism, and
elimination) attributes, primary pharmacology bind-
ing efficiencies, and in vitro safety data for these two
sets of compounds. This scholarship provides guidance
for the design of CNS molecules in a property space
with increased probability of success and may lead to
the identification of druglike candidates with favorable
safety profiles that can successfully test hypotheses in
the clinic.
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T
he pharmaceutical industry faces significant
attrition of drug candidates due to safety or
suboptimal pharmacokinetics findings, result-

ing in increased costs and extended timelines for the
drug development process (1). This paradigm is unsus-
tainable, and there is an urgent need to identify new
strategies to decrease cycle times in discovery, to in-
crease survival of drug candidates, and to expedite
validation of new mechanistic hypotheses in the clinic,
which may result in the launch of more new drugs.
Ideally, medicinal chemists would build in druglike
properties and desirable safety attributes at the design
stage, before molecules are synthesized. As part of our
effort to increase survival of drug candidates and to
move our medicinal chemistry design to higher prob-
ability space for success in the Neuroscience therapeutic
area, we embarked on data collection and rigorous
analysis of the property space for central nervous system
(CNS) molecules.

Numerous analysesofmarketeddrugs, clinical candi-
dates, patented molecules, and CNS permeability have
been reported in the literature (2-10). Our scholarship
focused on a rigorous data generation and a thorough
analysis of attributes for marketed CNS drugs (drug
set or drugs) and a set of Pfizer CNS candidates
(candidate set or candidates). In particular, we focused
on understanding the interrelationships between physi-
cochemical properties, in vitro ADME (absorption,
distribution, metabolism, and elimination) attributes,
primary pharmacology binding efficiencies, and in vitro
safety data for these two sets of compounds. This data
was examined with the goal of identifying trends and
defining a set of property values that would best define
theCNSdrug space associatedwith a higher probability
of clinical success. The knowledge obtained from this
analysis could in turn be utilized prospectively to design
safe and brain-penetrable molecules based on the align-
ment of a set of key properties.
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Physicochemical properties associated with druglike
molecules have been described previously (7, 11, 12).
The well-known rule of five (RO5) was derived in 1997
from a database of clinical candidates that had reached
phase II trials or further (13). It defined end points for a
set of four physicochemical properties that described
90%oforally active drugs that achieved phase II clinical
status: (a) molecular weight, MW < 500 Da; (b)
lipophilicity, log P or the calculate of 1-octanol-water
partition coefficient, ClogP < 5; (c) number of hydro-
gen-bond donors, OH plus NH count, <5; and (d)
number of hydrogen-bond acceptors, O plus N atoms,
<10. These four physicochemical parameters and their
criteria describe fundamental attributes that are asso-
ciated with acceptable aqueous solubility and intestinal
permeability, key factors for the first step of oral
bioavailability (13). The RO5 was created to help
medicinal chemists design compounds with improved
physicochemical properties; its simplicity and predict-
ability have resulted in its use as a standard benchmark
of druglikeness. To go beyond the properties associated
with the RO5, we became interested in developing a
holistic understanding of physicochemical property
space for CNS molecules by carrying out a thorough
analysis of properties for CNS drugs and a set of CNS
candidates.

In vitro ADME end points have become a main
staple of information to guide medicinal chemists in
drug design (7, 14, 15). In an effort to gain a better
perspective on ADME space for the drugs and the
candidates, these molecules were profiled utilizing
high-throughput (HT) assays commonly employed by
Pfizer and the industry. The ADME assay end points
that we focused on were passive apparent permeability
(Papp), P-glycoprotein (P-gp) efflux liability, andhuman
liver microsomal (HLM) metabolic stability. We were
interested in defining and understanding these ADME
parameters with the idea that applying this knowledge
prospectively at the drug design stage would yield
compounds with reduced P-gp liability and low human
dose projections.

Over the past few years, the relationships between in
vitro potency, size, and lipophilicity havebeen examined
and reviewed (6, 16). It has been realized that design by
simply driving to a higher potency space is often futile,
because it tends to result in merely increasing size or
lipophilicity. Concepts such as ligand efficiency (LE),
which correlates potency and size, and ligand-lipophili-
city efficiency (LLE), which correlates potency and
lipophilicity, have been utilized by medicinal chemists
to retrospectively evaluate compound potency to prop-
erties. More recently, Keser€u andMakara proposed the
use of ligand-efficiency-dependent lipophilicity (LELP),
a function that correlates all three factors of potency,
size, and lipophilicity (17). Defining in vitro potency

space in relationship to the physicochemical properties
of successful drugs and candidates may expand our
understanding of the optimum LE, LLE, and LELP
values in CNS space. Furthermore, connecting in vitro
potency to physicochemical properties such as ClogP
and size (MW) will enable better utilization of these
easily calculated properties in CNS drug design.

Safety findings are one of the most prevalent factors
in compound attrition (1). As part of our analysis of
properties for drugs and candidates, we became inter-
ested in understanding profiles associated with certain
safety parameters. Utilizing HT assays, we generated in
vitro data to assess potential for the following safety
risks: drug-drug interactions (CYP inhibitions), hERG
liability (inhibition of dofetilide binding), and cellular
toxicity. In addition, we hoped to develop an improved
understanding of key physicochemical properties asso-
ciated with toxicity outcomes. Hughes et al., in examin-
ing physicochemical drug properties associated with in
vivo toxicology outcomes, have confirmed a long-stand-
ing empirical observation of increased incidence of
toxicity for highly lipophilic and low polarity com-
pounds (18): an increased relative risk (6:1) for an
adverse event in toxicology studies was observed
when compounds possessed both high lipophilicity
(ClogP > 3) and low topological polar surface area
(TPSA<75 Å2). The outcome from their analysis
supports the claim that the increase in in vivo toxicity
may be driven by the promiscuity of highly lipophilic
molecules (6). The ClogP > 3 and TPSA< 75 relative
risk factors (3 and 75 RRFs) can inform medicinal
chemists about safety and the probability of succeeding
in a particular chemical space. On the other hand, a
crucial consideration in the design of CNS active com-
pounds is brain permeability, and a common approach
has been to improve brain penetration by driving com-
pounds toward this exact higher-risk area of increased
lipophilicity and lower polarity. Based on the 3 and 75
RRFs, this approach could place a substantial propor-
tion of investigational CNS compounds in a chemical
space with increased risk of in vivo toxicology findings.
Byunderstanding key safety and pharmacokinetic para-
meters, we hoped to identify strategies to balance these
characteristics, and to drive the molecular design to the
space of higher probability of success from both the
brain penetration and safety perspectives.

In this paper, we report our analysis of physicochemi-
cal properties, in vitro ADME attributes, binding effi-
ciencies, and in vitro safety assay data associated with
119 drugs and 108 candidates and its utility in identify-
ing the most favorable CNS property space. We gener-
ated a significant amount of data in-house to carry
out this analysis and built the scholarship around
design strategies that may lead to successful CNS drug
candidates.
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Results and Discussion

Physicochemical Property Space for CNSMole-
cules

The 119 drugs and 108 candidates were evaluated
against a set of six calculated fundamental physico-
chemical properties that have gained wide acceptance
in the medicinal chemistry community as key para-
meters for drugdesign: (a) lipophilicity, calculatedparti-
tion coefficient (ClogP); (b) distribution coefficient at
pH=7.4 (ClogD); (c)molecularweight (MW); (d) topo-
logical polar surface area (TPSA) (19); (e) number of
hydrogen bond donors (HBD); (f) most basic center
(pKa) (4, 13, 19, 20). The range of physicochemical
properties of the drugs and candidates as described by
these six parameters was quite broad (Figure 1). The
ClogP values for the majority of the drugs varied from
0.4 (10th percentile) to 5.1 (90th percentile) with a
median ClogP value of 2.8. As expected for CNS drugs,
a similar but shifted range existed for ClogD, which
varied from -0.5 (10th percentile) to 3.8 (90th
percentile) with a median value of 1.7. Compounds in
the candidate set showed similar a ClogP range, but
right-shifted to higher lipophilicity, with 10th to 90th
percentile values of 1.2 to 5.8 and a higher median value
of 3.3, which was statistically significant (two-sided
Student’s t test, p = 0.0022). There was no statistically
significant difference ( p=0.057) in ClogD between the
two sets, although the drug set had a lowermedian value
by 0.5 units. Comparison of the MW for drugs and
candidates also showed that the candidate set had a
higher medianMW (360.4) than the drug set (305.3) by
55 Da, which was statistically significant ( p< 0.0001).

Our analysis suggests that for centrally acting drugs,
there may be a need to design compounds with further
reduced ClogP or MW to better match the correspond-
ing properties in the drug set.

Polarity, as described by polar surface area (TPSA),
ranged from about 16.1 Å2 (10th percentile) to 86.2 Å2

(90th percentile) with a median value of 44.8 Å2 for the
drug set. There was no significant difference between
candidates and drugs. TPSA values for both sets of
compounds were higher than anticipated with approxi-
mately 25% of the drugs having TPSA > 63 Å2 (75th
percentile) and more than 10% of the drugs having
TPSA > 86 Å2. The drugs and the candidates had a
minimal number of hydrogen bonddonors (HBD), with
the median value being one (1) hydrogen bond donor
and with 85% of the compounds in both sets having
HBD e 2. Lipinski’s RO5 identified HBD as a critical
component of the drug property analysis and targets a
HBD count (OH plus NH count) of <5. Based on the
number of HBD associated with CNS drugs and candi-
dates, optimization of HBD to e 2 may increase the
odds of identifying CNS-penetrable compounds.

Many CNS compounds have basic amines as part of
their pharmacophore, and it is known that there are
safety liabilities associated with lipophilic basic amines,
such as hERG inhibition (7) and phospholipidosis (21);
this prompted our interest in understanding basicity
profiles. The pKa profiles of the drugs and candidates
were similar, with amedian pKa of 8.4 for both the drug
and the candidate sets. It is interesting to note that only
about 10% of the drugs have a pKa> 10 and that there
are numerous (25/119) CNS drugs with pKa e 7.4.

Figure 1. Physicochemical property distribution and statistics of drugs and candidates are shown for ClogP, ClogD, MW, TPSA, HBD, and
pKa.N represents the number of compounds included in each analysis. Two-sided Student’s t test was applied to evaluate statistical significan-
ces of drugs and candidates.
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While the CNS drug space as defined by ClogP,
ClogD, MW, TPSA, HBD, and pKa is broad, our
analysis points to optimal ranges for these properties
(median valueswere found to beClogP=2.8,ClogD=
1.7,MW=305.3Da, TPSA=44.8 Å2, HBD=1, and
pKa = 8.4), which may be of great utility in prospective
design of CNS activemolecules and the identification of
drug candidates that can successfully progress to the
clinic.

ADME Profiles of CNS Molecules
Significant advances in the development of HT in

vitro ADME assays have enabled the earlier assessment
ofpotential liabilities (lowpermeability, susceptibility to
CNS efflux transporters, and metabolic instability)
associatedwith newcompounds; 10-20 years ago, these
assays did not exist or were not routinely used at a stage
that informed drug design. In an effort to gain a better
perspective on the ADME properties of drugs and
candidates, we embarked on the in vitro profiling of
these compounds in in-houseHTassays toassess perme-
ability, P-gp efflux liability, and metabolic stability. We
have used the MDCK cell line to profile passive appar-
ent permeability (Papp) (14). The MDCK cell line is an
epithelial cell line that spontaneously forms a confluent
polarized monolayer, well-suited for determination
of compound transport across epithelial and barrier
tissues. From MDCK assay data, we classified the
permeability of a molecule as low, moderate, or high
based on its relative ranges of Papp rates as follows:
Pappe 2.5, low permeability; 2.5<Pappe 10,moderate
permeability; and Papp > 10, high permeability; units
are 10-6 cm/s. The P-gp efflux liability was assessed
utilizing the MDR1-MDCK cell line, an MDCK line
stably transfectedwith theMDR1gene,which expresses
a functionally active human P-gp (14). Transport is
determined in both directions, from apical or luminal
to basolateral (A to B) and basolateral to apical or
luminal (B to A) directions. Resultant Papp values were
then compared using eq 1. On the basis of our historical
data and accounting for experimental and cell line
variance, a compound with an efflux ratio (ER) > 2.5
is considered to be a P-gp substrate andmay experience
P-gp efflux liability (14).

P-gp ER ¼ PappðB to AÞ
PappðA to BÞ ð1Þ

Wewere able to obtain Papp and P-gp efflux data for
approximately 60-75% of compounds in the drug and
candidate sets (Figure 2A,B), see Supporting Informa-
tion for tabulated values. In the MDCK assay, 75% of
the drugs show high Papp values, while the candidates
had a lower percentage (51%) of compounds with high
Papp values ( p = 0.0008). A similar discrepancy was
observed when we assessed P-gp efflux liabilities for

both sets of compounds (Figure 2B). Profiling with the
MDR1-MDCK assay showed that 75% of the drugs
and 55% of the candidates were not considered to be P-
gp efflux substrates, because their efflux ratios were e
2.5 (Figure 2B). Consequently, there is a potentially
lower possibility of brain penetration issues due to P-gp
efflux liability for these compounds. An optimal mole-
cule could be achieved if it is aligned in both end points,
possessing both high Papp and low P-gp efflux liability.
Analyzing the compound set using both Papp and P-gp
data (Figure 2C) revealed that 70% (45 out of 64) of the
drugs have both attributes aligned, while 40% of candi-
dates (30 out of 74) have both high permeability and low
P-gp liability. Several drugs hadPapp values>35� 10-6

cm/s, and no predicted P-gp efflux liability (efflux ratios
e 2.5) as exemplified by midazolam, alprazolam, min-
aprine, andzolpidem.Overall, the drugs hadhigherPapp

values and lower P-gp efflux liability than the candidate

Figure 2. The distributions ofPapp and P-gp efflux ratio of drugs and
candidates. The numbers of compoundswithmeasured data are high-
lighted above each graph. (A)The binned values ofPapp obtained
from theMDCKassay, color-coded by high permeability (Papp>10,
green), moderate permeability (2.5< Pappe 10, yellow), and low
permeability (Pappe 2.5, red) in the units of 10-6 cm/s. (B) Thebinned
values for P-gp efflux liability, color-coded by low P-gp liability
(P-gp ER e 2.5, green) or high P-gp liability (P-gp ER > 2.5, red).
(C) Mosaic plots of molecules with both Papp and P-gp data.
Green blocks represent the percentages of molecules with both
attributes (high Papp and low P-gp liability), the orange blocks
represent percentages of molecules with only one attribute (high
Papp or low P-pg liability), and the red blocks represent the
molecules with neither high Papp nor low P-gp.
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set ( p=0.0077).Given today’s availabilityofHTassays
such asMDCKandMDR1-MDCKand the knowledge
that the drug set has a higher percentage of compounds
with both high Papp and low P-gp liability, medicinal
chemists should utilize these end points to drive design
and selection of centrally acting compounds.

Metabolic stability data for the drugs and the candi-
dates, expressed as unbound intrinsic clearance (CLint,u),
was generated using a HT in vitro human liver micro-
some (HLM) assay and an in silico model of estimated
microsomal free fraction (cFu,mic) according to eq 2 (22).
The use ofCLint,u has been found to give amore accurate
prediction of in vivo clearance than does CLint,app and as
such we have used this value for these analyses (23). A
higher CLint,u value suggests a faster rate of metabolism
of free drug. CLint,u data calculated using eq 2 were
binned as follows: CLint,u e 100 mL/(min 3 kg) (low
clearance) and CLint,u > 100 mL/(min 3kg) (high clear-
ance). The cutoff of CLint,u used in this analysis was
selected to link metabolic stability as measured by
the HLM assay to projected dose (eq 3). Assuming that
drug metabolism is primarily driven by cytochrome
P450s (CYPs), the CLint,u can be used as a key compo-
nent of dose projection using eq 3 (23). For a mole-
cule with an efficacious static state unbound concentra-
tion (Css,u) of 30 nM, MW = 305 (median of drug set,
Figure 1), 100% absorption ( fa = 1), and targeting
a dose e 100 mg for a 70 kg human in a dosing interval
of 24 h, the clearance CLint,u would need to be
e 100 mL/(min 3 kg) (for example, CLint = 50 mL/
(min 3 kg) and cFu,mic = 0.5).

CLint, u ¼ CLint

cFu,mic
ð2Þ

dose ½mg� ¼ Css, u ½nM�CLint, u ½mL=ðmin 3 kgÞ�τ ½min�
fa

MW ½Da�

� 70 � 10-9 ð3Þ
We were able to carry out HLM assays and then

calculate CLint,u values for 90 of 119 drugs and 93 of 108
candidates (see Supporting Information for tabulated
results). Of the 90 drugs with experimental data, 71%
were classified as having low clearance, with CLint,u e
100 mL/(min 3kg) (Figure 3). The candidate set in
general had fewer compounds (48%) in the low clear-
ance group, and the distribution was statistically differ-
ent from the drug set ( p=0.0016). Based on a strong
correlation between CLint,u and ClogP, it is not surpris-
ing that the candidate set had, on average, higher CLint,u

values, which could have originated from the higher
intrinsic clearance and lower microsomal free fraction
(24). In most cases, low clearance should be desirable,
because it would contribute to low dose projections,
which in turn may result in compounds with better

safety profiles. However, it is important to note that
approximately one-third (29%) of the drugs have high
CLint,u yet also have acceptable drug profiles because of
compensation from other attributes. For example, par-
oxetine has a high CLint,u (>100mL/(min 3 kg)), but the
clearance liability is overcome by its excellent potency
(Ki = 0.04 nM) and efficient absorption from the
gastrointestinal tract, resulting in a low dose (10-
40 mg) compound (25). The paroxetine example is a
good reminder that using a single end point such as
CLint,u to select a compound is unwise and can result in
bypassing acceptable candidates.

Alignment of ADME Attributes
Examination of individual ADME properties (Papp,

P-gp,CLint,u) suggested that for each property the drugs
had on average a superior profile over the candidates.
To increase the probability of success, design should
focus on optimizing all properties in one molecule. To
examine the alignment of these attributes, the number of
attributes in the desirable space that each molecule
possessed was summed using these criteria: high perme-
ability (Papp>10� 10-6 cm/s), lowP-gp liability (e 2.5),
and low clearance (CLint,u<100mL/(min 3kg)). A value
of 3was assigned to themolecule if all three criteriawere
satisfied, 2 was assigned if only two out of three attri-
buteswere satisfied, and so on.Using this simple scoring
system, the drug set was highly populated (61%) with
compounds possessing all three desired ADME attri-
butes (Figure 4). In contrast, the candidate set had
statistically fewer compounds (30%) with full ADME
alignment ( p=0.0025). This analysis clearly suggests
that a holistic alignment of attributes is key to increasing
the probability of success; thus medicinal chemists
should utilize all these attributes in designing new
molecules.

CNS Drugs and Candidates Have High LE,
LLE, and LELP

Concepts that correlate potency, size, and lipophili-
city have been utilized bymedicinal chemists to evaluate
binding efficiencies to the desired biological target, with
the goal of maximizing these efficiencies as new drug

Figure 3. The distribution of binned clearance (CLint,u) of drugs
and candidates, color-coded by low clearance (CLint,ue 100 mL/
(min 3kg), green) and high clearance (CLint,u > 100 mL/(min 3 kg),
red).
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candidates are designed. Ligand efficiency (LE) is a
concept used to estimate the efficiency of binding with
respect to size, as measured by the number of heavy
atoms (eq 4) (16). Ligand-lipophilicity efficiency (LLE)
(eq 5) has also been proposed, suggesting that focus
should be placed on maximizing lipophilicity efficiency
(26). More recently, Keser€u and Makara created a
ligand-efficiency-dependent lipophilicity (LELP) des-
criptor, which factors in both size and lipophilicity

(eq 6) (17). Of the 119 drugs, we were able to obtain
primary pharmacology potency values (IC50 or Ki

values) for 95 drugs based on literature reports. The
medianLE,LLE, andLELPvalues for the drug setwere
0.52, 6.3, and 5.9, respectively (Figure 5).Median values
obtained for the candidates were 0.46, 6.4, and 7.00 for
LE, LLE, and LELP, respectively. There were no
statistically significant differences between the LE and
LLE values for the drugs and the candidates. Given the
higher MW and ClogP values associated with the
candidate set, on average the compounds in this set
must be more potent than those in the drug set to
generate equivalent LE and LLE median values. While
the higher MW and ClogP values may have resulted in
increased binding affinities and favorable LE and LLE
values, these properties may have also contributed to
the less favorable ADME profiles associated with the
candidate set, as discussed previously. These observa-
tions reinforce the need to balance all properties in the
prospective design of new molecules. The effects of
higher lipophilicity and molecular weight are reflected
in the LELP, see distribution LELP plot, Figure 5.
Unlike the LE and LLE analyses, comparison of the
median LELP values of drugs (5.9) to the candidates
(7.0) yielded a statistically significant difference ( p=
0.0066), suggesting that LELP maybe useful in post-
synthesis analysis to ensuremaximumbinding efficiency
for size and lipophilicity. Examination of the status
(active or terminated) of the candidates with poor

Figure 5. LE, LLE, and LELP distributions and statistics are shown for 95 drugs and 107 candidates with primary pharmacologic potency
data. Two-sided Student’s t test was applied to test the difference between drugs and candidates.

Figure 4. ADME attribute alignment of drugs and candidates,
color-coded by the count of achieving the following criteria: high
permeability (Papp>10� 10-6 cm/s), lowP-gp liability (e 2.5), and
low clearance (CLint,u e 100 mL/(min 3kg)). Colors are as follows:
full alignment with 3/3 attributes achieved (green), 2/3 attributes
achieved (yellow), 1/3 attributes achieved (red), 0/3 attributes achie-
ved (gray).
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LELP (LELP > 10) yielded only compounds that had
been terminated along the drug discovery/development
pathway.

LE ¼ -1:4 logðKi ½M�Þ
number of heavy atoms

ð4Þ

LLE ¼ -logðKi ½M�Þ-ClogD ð5Þ

LELP ¼ ClogP

LE
ð6Þ

The relationship between LE and LLE of the drugs
and candidates is shown in Figure 6. Compounds with
both high LE (g 75th percentile, g 0.59) and LLE
(g 75th percentile, g 7.9) values are captured in the
upper right square and those with low efficiencies in the
lower left square. Several drugs (12%, 11/95) possess
both high LE and LLE values as shown in Figure 6,
upper right square. For example, recently launched
varenicline (Chantix/Champix, R4β2 partial agonist)
had LE and LLE values of 0.87 and 11.3, respectively,
a primary factor in its low dose value (1mg, once a day).
Other drugs with high LE and LLE values were amphe-
tamine (Adderall, NRI), pregabalin (Lyrica, R2δ), pra-
mipexole (Mirapex, D2 agonist), nicotine (Nicorette,
R4β2), and gabapentin (Neurontin, R2δ). This analysis
reveals that a majority of the drugs (75%) have either
LE valueg 0.43 or LLE valueg 5.2 andmore than half
(54%) possess both. Thus, factoring binding efficiency
factors such LE (size), LLE (lipophilicity), and LELP

(size and lipophilicity) into the compound selection
process will be a critical component for success.

Safety End Points for Drugs and Candidates
Early safety in vitro screening has become common

practice within both large pharmaceutical and biotech-
nology companies (27). Examples of commonly mea-
sured end points to assess potential safety issues include
inhibition of cytochrome P450 (CYPs) monooxygenase
enzymes to determine potential for drug-drug interac-
tions (28), inhibition of dofetilide binding (Dof) as a
surrogate indicator of hERG potassium ion channel
effects (29, 30), “off target” pharmacology utilizing
broad ligand profiling assays (31), reactive metabolite
generation, and genetic toxicity. In addition, in vitro
cellular toxicity assays have been used as a surrogate for
acute in vivo toxicity studies (32).As part of our analysis
of properties for drugs and candidates, we generated in
vitro data for these compounds in HT assays that
assessed CYP inhibition, inhibition of dofetilide bind-
ing, and cellular toxicity.

The potential for drugs and candidates to mediate
drug-drug interactions (DDI) through perturbation of
clearance mechanisms for other drug substances was
assessed by measuring the inhibition of CYP2D6 and
CYP3A4 in HT screening assays. These assays were
conducted with HLM and contained control substrates
for these CYPs together with compounds of interest.
Data was recorded as percent inhibition (% inh) of
reference control substrate metabolism and was inter-
preted as follows with regard to risk for DDI: % inh e
25 as “low risk”, 25 <% inh e 75 as “moderate risk”,
and % inh > 75 as “high risk” for both CYP2D6 and
CYP3A4 substrates (see Supporting Information for
tabulated data). Of the 99 drugs and 101 candidates for
which we obtained experimental CYP inhibition data,
over 80% of compounds tested were classified as low
risk for causing DDI through either CYP2D6 or
CYP3A4 inhibition (Figure 7), and no statistically signi-
ficant differences were found between drugs and candi-
dates. The data obtained suggests that most of these
drugs and candidates occupy desirable, low risk space
for DDI.

Blocking of the potassium hERG channel may result
in prolongation of the QT interval of cardiac rhythm.
Inhibition of dofetilide binding to the hERGchannel has
been used as a surrogate to assess potential blockade of
this channel (30). In vitro dofetilide inhibition data for
the drugs (90 out of 119) and the candidates (88 out of
108) was obtained by measuring competitive binding to
the dofetilide binding site in HEK-hERG membrane
homogenates (See Supporting Information for tabulated
results). The output examined was percent inhibition
(% inh) of dofetilide binding, where the higher the value,
the higher the risk of interference with the hERG

Figure 6. The relationship between ligand efficiency (LE) and ligand-
lipophilicity efficiency (LLE) of drugs and candidates is shown.
The plot is guided by 25th percentiles (orange lines) and 75th
percentiles (blue lines) of LE and LLE for the drug set. Com-
pounds in the upper right square are compounds considered to
have both high LE and LLE, and compounds occupying the
lower left square are considered to have low LE and LLE.
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cardiac ion channel.Resultswere classified as follows:%
inh< 15 as low risk, 15e% inhe 50 as moderate risk,
and % inh > 50 as high risk. Analysis of the data
revealed that 57% of the drugs and 43% of the candi-
dates had low binding to the dofetilide site in the hERG
channel (Figure 8A). While the difference in dofetilide
inhibition was not statistically significant ( p=0.1003)
between drugs and candidates, we hypothesized that the
larger percentage of compounds in the candidate setwith
moderate to high risk was due in part to their higher
ClogP. When the data were grouped into two ClogP
bins, ClogP> 3 and ClogPe 3 (Figure 8B), a dramatic
trend was observed for both sets of compounds: over
70% of the compounds with ClogP e 3 exhibited low
binding to the dofetilide site in the hERG channel (low
risk) and greater than 70%of compoundswithClogP>
3 had moderate to high binding to the dofetilide site in
the hERG channel (moderate to high risk). There was a
larger proportion of compounds in the higher ClogP
space (ClogP>3) for the candidate set as opposed to the
drug set, supporting the hypothesis mentioned above
regarding lipophilicity (Figure 8B). The drug set was
further partitioned by pKa, to determine whether incor-
poration of an additional physicochemical property
would increase the odds of identifying the higher risk
compounds (Figure 9).When ClogPwas combined with
pKa, an increased refinement in identifying compounds
with potential hERG liability was indeed observed. The
drug subset exhibiting both highClogP and elevated pKa

had a significantly increased percentage of compounds
with high inhibition of dofetilide binding (>50% inh)
comparedwith thosewith lowClogP and lowpKa. Thus,
both ClogP and pKa can be used prospectively in design

to improve the odds of identifying compounds with
reduced risk of binding to the hERG channel (Figure 9).

In addition to the two in vitro safety assays described
above, we examined cell viability outcomes for the
drugs and the candidates. The data was generated using
a transformed human liver epithelial cell line, and
the output was reported as IC50 values in μM, where
the lower the IC50 value, the greater the cell toxicity. The
IC50’s were classified as follows: transformed human
liver epithelial cell viability (THLE Cv) e 100 μM
(low cell viability) and THLE Cv>100 μM (high cell
viability).

Of the 119 drugs and 108 candidates, we were able to
obtain THLE Cv IC50’s on 81 and 102 compounds,
respectively. The cell viability IC50 values for the drug
set ranged from 18.5 μMto greater than 300 μM,with a
majority of them (79%) having THLE Cv > 100 μM
(Figure 10). Applying the same THLE Cv cutoff of
>100 μM, 71% of the candidates showed high cell
viability, statistically the same as the drug set ( p =
0.1924). Based on these criteria, most of these drugs

Figure 7. Drug and candidate distribution of potential drug-drug
interactions (DDI) for (A) CYP2D6 and (B) CYP3A4. Results are
displayed as percent inhibition (% inh) of reference control sub-
strate metabolism and are interpreted as follows with regard to risk
for DDI: % inhe 25 (low risk, green), 25 <% inhe 75 (moderate
risk, yellow),% inh>75 (high risk, red) for bothCYP2D6 andCY-
P3A4 substrates.

Figure 8. Analysis of percent inhibition (% inh) of dofetilide bind-
ing for drugs and candidates. The pie charts display color-coded
potential risk of hERG interaction: low risk (% inh e 15, green),
moderate risk (15<% inhe 50%, yellow), high risk (% inh> 50,
red). (A) Distribution of binned dofetilide binding for both drugs
and candidates. (B) The binned dofetilide binding of drugs and
candidates was further grouped by ClogP: ClogP e 3 and
ClogP > 3.
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and candidates occupy desirable, low risk cellular toxi-
city space. Lipophilicity is a dominant factor in both
promiscuity (6) and the 3 and 75 relative risk factors
(18); therefore we also analyzed the THLE Cv data
by segregating it into two ClogP bins, high lipophili-
city (ClogP > 3) and low lipophilicity (ClogP e 3)
(Figure 10B). Across the drugs and the candidates, a
higher percentage of compounds (> 90%) in the low
lipophilicity bin (ClogP e 3) had high cell viability
(THLE Cv > 100 μM) in comparison to compounds
(62% or 56%) in the high lipophilicity bin (ClogP> 3).

Thedrug setwas further analyzed byusing twoTPSA
bins, TPSAe 75 andTPSA>75, to determinewhether
further improvement in identification of the more risky
compounds could be achieved based on the 3 and 75
RRFs. Using these two TPSA bins, no statistical differ-
ence or improved odds in the identification of com-
pounds with poor THLE Cv was achieved (data not
shown).However, whenClogPwas combinedwithMW
(median value) for the drug set, an enhanced segregation
of compounds with in vitro toxicity was observed
(Figure 11). This data reinforces that lipophilicity is
not the only influencing factor in cell viability outcome,
a measure of potential in vivo toxicity.

Alignment of Safety Attributes
Independent examination of each of the safety prop-

erties (DDI, dofetilide binding, and cellular toxicity)
suggested that drugs on average are comparable to the
candidates, with no statistically significant differences.
To assess the safety alignment of drugs and candidates,

we characterized each compoundby the numberofmost
desirable safety attributes possessed according to the

Figure 9. Dofetilide inhibition data for the drug set versus ClogP
and pKa. Drugs with both higher ClogP and higher pKa had a
significantly increased percentage of compounds with high binding
(>50% inh) to the dofetilide site compared with those with low
ClogP and low pKa. The pie charts are color-coded by potential risk
of hERG channel blockade: low risk (% inhe15, green), moderate
risk (15 < % inh e 50, yellow), high risk (% inh >50, red).

Figure 10. Distribution of THLE Cv of drugs and candidates as
measured by an ATP depletion assay. Results are color-coded by
high cell viability (IC50 > 100 μM, green) and low cell viability
(IC50 e 100 μM, red). (A) Overall distribution of THLE Cv for the
drug and candidate set. (B) Segregation of THLE Cv data into high
and low lipophilicity bins.

Figure 11. Partitioning of THLE Cv data for the drug set by ClogP
and MW. The charts are color-coded by high cell viability
(IC50 > 100 μM, green) and low cell viability (IC50e 100 μM, red).
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following criteria: low DDI with both 2D6 and 3A4
substrates (% inhe 25%), lowdofetilidebinding (% inh
e 15%), and high THLECv (IC50> 100 μM). A count
of 0-3 safety attributes was possible for each molecule
as shown in Figure 12. The drug set was heavily
populated with compounds exhibiting full alignment
of the three safety attributes (34/77, 44%). In compari-
son with the drug set, the candidate set showed a trend
for fewer compounds (28/84; 33%) with fully aligned
desired attributes in one molecule. The difference be-
tween the alignment distributions of the drug and

candidate sets was not statistically significant (p =
0.4230). The highlighted safety assays may increase the
probability of success; however, further improvement in
the positive predictive values of new assays will be
essential to enable medicinal chemists to more rapidly
identify best in class molecules.

Lastly, we examined the drug and candidate sets for
full alignment of both ADME and safety attributes
using the criteria outlined above. For the 52 drugs with
all six measured end points, 18 compounds (35%)
possessed full alignment (6/6) of the desirable attributes
(Figure 13). Consistent with the earlier analysis of the
ADMEand safety attribute alignment, the candidate set
had fewer fully aligned attributes, 9 out of 62 com-
pounds (14%). Full alignment of these in vitro para-
meters is a potential key distinguishing factor for the
success of drugs with favorable therapeutic indices.

Conclusion

There are numerous design parameters thatmedicinal
chemists can follow in the drug discovery process and
defining the parameters that increase the probability of
identifying best in class molecules is of critical impor-
tance. Understanding the fundamental relationships
between physicochemical properties and in vitro and in
vivo outcomes is the foundation required to prospec-
tively design compounds with an overall favorable pro-
file. In our quest to further build this understanding in

Figure 12. Safety attribute alignments of drugs and candidates, color-
coded by the number of times amolecule achieved lowDDI for both
2D6 and 3A4, low dofetilide binding, or high THLE Cv: full
alignment (3/3) attributes (green), 2/3 attributes (yellow), 1/3 attri-
butes (red), 0/3 attributes (gray).

Figure 13. Plots ofADMEattribute alignment vs safety attribute alignment for the drug and candidate sets. The drugswith full alignment (6/6)
of ADME and safety attributes are exemplified.
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the CNS chemical space, we undertook a thorough and
detailed analysis of the physicochemical properties, in
vitro ADME attributes, primary pharmacology binding
efficiencies, and in vitro safety end points for 119 drugs
and 108 candidates.

We examined six fundamental physicochemical pro-
perties associated with these sets of compounds: ClogP,
ClogD, MW, TPSA, HBD, and pKa. The CNS drug
space defined by these six physicochemical properties is
quite broad, but our scholarship points to optimum
ranges for each of these properties. Based on the
drug set, median values were found to be ClogP=2.8,
ClogD=1.7,MW=305.3Da, TPSA=44.8 Å2, HBD=
1, and pKa=8.4 (Figure 14). Data generated in-house
in ADME high-throughput assays reinforced that the
majority of CNS drugs are highly permeable (MDCK
Papp> 10 � 10-6 cm/s), with little or no P-gp efflux
liability (P-gp ratios e 2.5), and with low to moderate
clearance rates (CLint,u e 100 mL/(min 3kg)). Based on
reported binding affinities to the primary pharmaco-
logical target, we also determined that >90% of the
drugs have LE and LLE values > 0.37 and > 3.3,
respectively, and LELP e 11.9 (10th percentile of these
parameters).MedianLE,LLE, andLELPvalues for the
marketed drug set were 0.46, 6.4, and 5.9, respectively,
with some CNS drugs displaying remarkable bind-
ing efficiencies (LE > 0.6 and LLE > 7.9). In general,
CNS drugs showed minimal drug-drug interactions
(measured by CYP3A4 and CYP2D6 inhibition) and
hERG liability (measured by inhibition of dofetilide
binding) as determined in high-throughput assays in-
house. Our analysis reinforced that binding to the
dofetilide site at the hERG channel was influenced by
lipophilicity and basicity. Finally, the majority of mar-
keted drugs tested in-house in an in vitro safety assay
utilizing aTHLEcell line showedgood cell viability (low
toxicity) at high concentrations (IC50 > 100 μM). This

analysis further suggested that lipophilicity and mole-
cular weight are factors influencing cell viability out-
comes, with low cellular toxicity (>100 μM) in the
THLE Cv assay and low lipophilicity (ClogP e 3)
potentially improving the odds of identifying CNS
compounds that may become drugs.

As part of this analysis, we included a set of Pfizer
candidates to understand potential similarities and dif-
ferences between compounds that successfully reached
the market and the candidate set. This candidate set
included both active and discontinued compounds and
excluded Pfizer candidates that had reached drug status,
such as varenicline, pregablin, ziprasidone, and sertra-
line. The candidates showed significant differences in
the median values associated with ClogP and MW in
comparison to themarketed drug set.Median values for
these two properties were higher for the candidates in
comparison to the drugs (ClogP median value of 3.3 vs
2.8 andMWmedian value of 360.4 vs 305.3). The higher
ClogP and MW median values associated with the
candidate set had an impact on other attributes such
as ADME (permeability, P-gp efflux, and clearance)
and LELP properties, resulting in less favorable profiles
for the candidates in comparison to drugs. Unlike LE
and LLE, LELP median values were statistically differ-
ent for the drugs vs candidates (5.9 vs 7.0) suggesting
that both size and lipophilicity may be important to
enable the identification of compounds with optimal
binding efficiencies. In comparison to the candidates,
the drug set showed a greater proportion of compounds
with aligned ADME and safety attributes in one mole-
cule, suggesting that holistic alignment of attributes is a
key to increased probability of success in the discovery
of drugs. These results are not surprising, because the
CNS drug set is comprised of molecules that have
survived to the market and thus does not provide a
perspective on the properties of compounds that were
not selected along the way as the marketed drugs were
being discovered and developed. In addition, it is im-
portant to reinforce that the candidate set included in
this analysis spans nearly 20 years of research. During
this period of time, our understanding of good physico-
chemical property space has significantly improved, and
the availability and use of high-throughput in vitro
ADMEand safety assays to characterize a large number
of compounds has become routine. Nevertheless, our
analysis suggests that for centrally acting drugs, there
may be a need to design compounds with further
reduced ClogP, MW, or both to better match the
corresponding properties in the marketed drug set.

As demonstrated by our analysis, physicochemical
properties, ADME attributes, target binding efficien-
cies, and safety in vitro attributes are all important
parameters to enable better candidate selections, saving
significant time and resource in the drug development

Figure 14. Drug optimum values.
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process. In particular, we were interested in understand-
ing key physicochemical properties associated with the
CNS drug space to better inform the design of future
drug candidates with the desired druglike and safety
properties. These physicochemical properties (ClogP,
ClogD, MW, TPSA, HBD, and pKa) impact a variety
of in vitro end points that medicinal chemists strive
to align, such as ADME end points (permeability Papp,
P-gp efflux, and metabolic stability), binding efficien-
cies, and safety end points. Lipophilicity (ClogP) con-
tinues to rise to the top as an important physicochemical
property and recent disclosures, for example, the 3 and
75 relative risk factors by Pfizer scientists, reinforce the
role of this property in safety outcomes. However,
utilizing one or two properties or attributes in the
design may be too restrictive and may not fully enable
the alignment of metabolic stability, permeability,
CNS penetration, and safety properties in one mole-
cule. Hence, we believe that a favorable approach
will involve the use of a multiparametric optimization
that takes into consideration optimum ranges asso-
ciated with all six physicochemical parameters in
CNS drugs to balance these properties and expand the
design space. Ultimately, our goal is to move our
medicinal chemistry design to a space of higher prob-
ability of success to increase speed in the identification
of candidates that survive to test hypotheses in the clinic
and that have a good chance of becoming marketed
CNS agents.

Methods

Data Collection
Marketed CNS Drugs. The drug set used in this

study includes 119 centrally active drugs. This group
of 119 drugs serves as a representative set of CNSdrugs
andwas notmeant to be all-inclusive. To the best of our
knowledge all compounds in the drug set could be used
as oral agents. Several drugs with mixed reports of
being centrally active were omitted from the data set as
well as some combination drugs. We either obtained
drug substances from the Pfizer internal collection or
purchased them from an external vendor in pure form.
All samples were handled in accordance with Pfizer
and the Federal Drug Enforcement Administration
(DEA) polices. A complete list of the drugs used in
the analysis appears in Table 1.

Pfizer CNS Candidates. The candidates included in
our analysis consisted of all 108 compounds that met
the appropriate preclinical profile to advance into
regulatory safety studies and, if appropriate, clinical
studies. Marketed Pfizer candidates, such as vareni-
cline, pregabalin, and ziprasidone, were not included in
the candidate set, but in the drug set. Solid samples
were obtained from the Pfizer internal collection and

handled in accordance with Pfizer policies. The candi-
date set utilized in this analysis represents 40 unique
mechanisms that span nearly two decades of research
from Pfizer (including CNS candidates obtained via
companies acquired by Pfizer). To the best of our
knowledge, all of these candidates targeted the oral
dosing route of administration. The list of target
families and number of candidates from each target
family for the candidate set appears in Table 2.

Physicochemical Property Data. This analysis
included calculated partition coefficient (ClogP),

Table 1. Marketed Drug Set by Name

Central Nervous System Drugs

acamprosate fluvoxamine propoxyphene

alprazolam gabapentin quazepam

amfebutamone galantamine quetiapine

amisulpride haloperidol ramelteon

amphetamine hydrocodone rasagiline

aniracetam indeloxazine reboxetine

apomorphine lamotrigine remifentanil

aprepitant levetiracetam riluzole

aripiprazole levomethadyl rimonabant

atomoxetine lofexidine risperidone

bromazepam lorazepam rivastigmine

bromocriptine meprobamate ropinirole

brotizolam methylphenidate ropivacaine

budipine metoclopramide selegiline

buprenorphine midazolam sertindole

buspirone milnacipran sertraline

cabergoline minaprine sinequan

caffeine mirtazapine sulpiride

carbamazepine moclobemide tacrine

carisoprodol modafinil talipexole

chlorpromazine morphine terguride

citalopram nalmefene thiopental

clomipramine naltrexone tiagabine

clonazepam nemonapride tianeptine

clozapine nicergoline topiramate

cyclobenzaprine nicotrol tramadol

dexmethylphenidate nimodipine trazodone

dextropropoxyphene nortriptyline tropisetron

diazepam olanzapine valproic acid

donepezil oxcarbazepine varenicline

dronabinol oxycodone venlafaxine

duloxetine paliperidone verapamil

eletriptan paroxetine vigabatrin

escitalopram pergolide vinpocetine

eszopiclone perospirone zaleplon

ethosuximide phenytoin ziprasidone

felbamate piracetam zolpidem

fentanyl pramipexole zonisamide

flumazenil pregabalin zotepine

fluoxetine propofol
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calculated distribution coefficient at pH=7.4 (ClogD),
molecular weight (MW), topological polar surface area
(TPSA) (19), the number of hydrogen bond donors
(HBD), and the calculated most basic center (pKa).
Calculated physicochemical properties were obtained
using standard commercial packages: Biobyte forClogP
calculations;ACD laboratories forClogDat pH7.4 and
the most basic pKa. TPSA was calculated using the
method developed by Ertl (19).
Statistical analyses were carried out using SAS JMP

7 statistical software (33), and the data was visualized
with JMP or Spotfire Decision Site (34). Differences
between drugs and candidates were statistically exam-
ined by Student’s t test for continuous variables
(Figure 1 and Figure 5) or by likelihood ratio χ2 test
of logistic regressions for ordinal classifications
(Figures 2, 3, 4, 7, 8, 10, and 12). Statistical significance
is defined by a p-value of less than 0.05.

ADMEData.Data on the following in vitro ADME
properties were generated in-house utilizing the corre-
sponding HT assays: (a) passive apparent permeability
(Papp), assayed utilizing the Madin-Darby canine
kidney (MDCK) cell line, (b) P-glycoprotein (P-gp)
efflux liability, assessed via an assay utilizing the
MDR1-MDCK cell line, an MDCK line stably trans-
fected with the MDR1 gene that expresses a function-
ally active P-gp, and (c) metabolic stability, expressed
as unbound intrinsic clearance (CLint,u) calculated
according to eq 2 (22), using the measured intrinsic
clearance (CLint,app), obtained via an in vitro, HT
human liver microsome assay and an in silico model
for free microsome fraction (cFu,mic).
Compounds included in the above studies were

handled as 30 mM stock solutions, which were gener-
ated, dispensed, and checked for purity by Pfizer’s
internal sample bank, and subsequently assayed in
the ADME assays. The ADME assays were performed
via reported methods as described previously for

MDCK Papp (14), MDR-MDCK P-gp (14), and meta-
bolic stability (14, 15, 22, 35).

Potency Data. Potency data was defined as in vitro
Ki or IC50 values reported in nanomolar at the defined
primary pharmacology target. In vitro binding data
were obtained from public databases (Prous, Wiki-
pedia, DrugBank, IDDB, PharmaPendium, Pharma-
Matrix, Thomson, and Goodman and Gilman) for
drugs and from in-house databases for the candidates.
For drugs and candidates with multiple pharmacology
profiles, the most active target was used in ligand
efficiency analyses (16, 17). Drugs with inconsistent
potency values throughout the literature were not
included in the ligand efficiency analyses. Rodent in
vitro binding end points were used when human in
vitro binding data were not available. See Supporting
Information for details.

Safety Data. Data for the following in vitro safety
end points were generated in house via HT assays: (a)
drug-drug interactions, assessed via inhibition of
cytochrome P450 (CYPs) monooxygenase enzymes,
in particular, 3A4 and 2D6 (28); (b) hERG liability,
assessed via inhibition of dofetilide binding (30) as a
surrogate indicator of hERG potassium ion channel
effects (blocking of hERG may result in prolongation
of the QT interval of cardiac rhythm) (29), and (c)
cellular toxicity, measured as activity in an in vitro
cellular toxicity assay as a surrogate for acute in vivo
toxicity (32). Assays were performed via reported
methods as described previously for DDI (28) and
dofetilide binding (30). The cellular toxicity data was
generated using a transformed human liver epithelia
cell line where ATP levels were detected using a biolu-
minescent end point. This assay utilized luciferase to
catalyze the formation of light from ATP and luci-
ferin (eq 5).

Transformed Human Liver Epithelial Cell Viability

Assay. THLE-2 (transformed human liver epithelial)
cells were obtained from ATCC (CRL-2706 or CRL-
10149) and cultured according to ATCC recommenda-
tions.Media consisted of basal medium (BEGMBullet
Kit, LonzaCat. no.CC-3170), supplementedwith 10%
fetal bovine serum (Sigma Cat. no. F4135), 2.5 ng/L
hEFG (BDBiosciences Cat. no. 356052), and 700 ng/L
phosphoethanolamine (Sigma Cat. no. p-0503). Cells
were cultured in T175 human fibronectin/collagen/
bovine serum albumin-coated flasks. For each experi-
ment, cells were plated onto 384 plates (human fibro-
nectin/collagen/bovine serum albumin-coated 384,

Table 2. Candidates by Target

candidate count target mechanism target family

13 enzymes enzymes

4 cannabinoids GPCR

13 dopaminergic GPCR GPCR

2 histaminergic GPCR GPCR

2 muscarinic GPCR

4 opioids GPCR

13 peptide GPCR GPCR

16 serotonergic GPCR GPCR

6 calcium channel ion channels

11 GABA receptors ligand-gated ion channel

5 glutamate receptors ligand-gated ion channel

8 nicotinic ligand-gated ion channel

11 reuptake inhibitors transporters
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custom order, BDBiosciences Cat. no. 359298) at a cell
density of 2.5 � 103/well in a total medium volume of
25 μL/well. Plates were incubated for 24 h at 37 �C, 5%
CO2.
Compound test plates were prepared using a 10 dose,

2.0-fold dilution scheme with a final assay concentra-
tion range from 300 to 0.058 μM. All compounds were
initially solubilized in 100% DMSO. This dosing
scheme contains 32 compounds per plate. Stock plates
were prepared by aliquoting 1 μL of 100� compound/
well (30-0.058 mM). The plates were prepared for
dosing by adding 99 μL of cell culture media and
mixing. Test compounds were added to cell culture
plates by aspirating the overnight culture media and
replacing it with 25 μL/well of media containing test
compound. The final concentration of DMSO in each
well was 1.0%.
Following a 72 h exposure to test compounds, cell

viability in each well was determined by assessing the
depletion of cellularATPusing theLonzaVialight Plus
Cell Proliferation/Cytoxicity Kit (Lonza cat. no.
LT07-119) according to the manufacturer’s protocol.
The ATP concentration was determined by reading
luminescence using a Wallac EnVision plate reader
(PerkinElmer, Waltham, MA). The percent of viable
cells relative to no-drug treated controls was deter-
mined for each well. Final data output was a calculated
IC50 value describing the dose projected to kill 50% of
the cells following a 72 h exposure.
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